Respuesta :

By definition, the volume of a cone is given by:
 [tex]V = \frac{\pi*r^2*h}{3} [/tex]
 Where,
 r: radius of the circular base.
 h: height
 Clearing the radio we have
 [tex]r = \sqrt{ \frac{3V}{ \pi*h} } [/tex]
 Substituting values:
 [tex]r = \sqrt{ \frac{3(144\pi)}{ \pi*12} } [/tex]
 Rewriting the obtained equation, we have:
 [tex]r = \sqrt{ \frac{432}{12}} [/tex]
 [tex]r = \sqrt{36} [/tex]
 [tex]r = 6 [/tex]
 Answer:
 
the radius of the base of the cone is:
 
[tex]r = 6 [/tex]




ACCESS MORE