By definition, the volume of a cone is given by:
[tex]V = \frac{\pi*r^2*h}{3} [/tex]
Where,
r: radius of the circular base.
h: height
Clearing the radio we have
[tex]r = \sqrt{ \frac{3V}{ \pi*h} } [/tex]
Substituting values:
[tex]r = \sqrt{ \frac{3(144\pi)}{ \pi*12} } [/tex]
Rewriting the obtained equation, we have:
[tex]r = \sqrt{ \frac{432}{12}} [/tex]
[tex]r = \sqrt{36} [/tex]
[tex]r = 6 [/tex]
Answer:
the radius of the base of the cone is:
[tex]r = 6 [/tex]