Respuesta :

For this case we have the following linear equation:
 [tex]y = -2x + 8 [/tex]
 As the lines are perpendicular, then the slope of the line is:
 [tex]m' = \frac{-1}{m} [/tex]
 Where,
 m: is the slope of the original line
 Substituting values we have:
 [tex]m' = \frac{-1}{-2} [/tex]
 Rewriting:
 [tex]m' = \frac{1}{2} [/tex]
 Then, the equation in point-slope form is given by:
 [tex]y-yo = m '(x-xo) [/tex]
 Where,
 (xo, yo): ordered pair that goes through the line.
 Substituting values we have:
 [tex]y-9 = \frac{1}{2}(x+3) [/tex]
 Answer:
 
an equation in point-slope form for the line perpendicular to y = –2x + 8 that passes through (–3, 9) is:
 
[tex]y-9 = \frac{1}{2}(x+3) [/tex]
ACCESS MORE