Respuesta :
Answer:
[tex]\frac{\text{sin(B)}}{10}=\frac{\text{sin}(42^{\circ})}{16}[/tex]
Step-by-step explanation:
Please find the attachment.
We have been given that in triangle ABC, side [tex]BC=a=16[/tex], side [tex]AC=b=10[/tex] and measure of angle A is 42 degrees. We are asked to find an equation that can be used to find the measure of angle B.
We will use law of sines to solve our given problem.
[tex]\frac{\text{sin(A)}}{a}=\frac{\text{sin(B)}}{b}=\frac{\text{sin(C)}}{c}[/tex]
Upon substituting our given values, we will get:
[tex]\frac{\text{sin}(42^{\circ})}{16}=\frac{\text{sin(B)}}{10}[/tex]
Switch sides:
[tex]\frac{\text{sin(B)}}{10}=\frac{\text{sin}(42^{\circ})}{16}[/tex]
[tex]\frac{\text{sin(B)}}{10}*10=\frac{10*\text{sin}(42^{\circ})}{16}[/tex]
[tex]\text{sin(B)}=\frac{10*\text{sin}(42^{\circ})}{16}[/tex]
[tex]B=\text{sin}^{-1}(\frac{10*\text{sin}(42^{\circ})}{16})[/tex]
[tex]B=\text{sin}^{-1}(\frac{10*0.669130606359}{16})[/tex]
[tex]B=\text{sin}^{-1}(\frac{6.69130606359}{16})[/tex]
[tex]B=\text{sin}^{-1}0.418206628974375)[/tex]
[tex]B=24.72^{\circ}[/tex]
Therefore, the equation [tex]\frac{\text{sin(B)}}{10}=\frac{\text{sin}(42^{\circ})}{16}[/tex] can be used to find m angle B.
