Respuesta :

c2 = a2 + b2 − 2ab cos C = 162 + 102 − 2(10)(16) cos 22°

Answer:

[tex]\frac{\text{sin(B)}}{10}=\frac{\text{sin}(42^{\circ})}{16}[/tex]

Step-by-step explanation:

Please find the attachment.

We have been given that in triangle ABC, side [tex]BC=a=16[/tex], side [tex]AC=b=10[/tex] and measure of angle A is 42 degrees. We are asked to find an equation that can be used to find the measure of angle B.

We will use law of sines to solve our given problem.

[tex]\frac{\text{sin(A)}}{a}=\frac{\text{sin(B)}}{b}=\frac{\text{sin(C)}}{c}[/tex]

Upon substituting our given values, we will get:

[tex]\frac{\text{sin}(42^{\circ})}{16}=\frac{\text{sin(B)}}{10}[/tex]

Switch sides:

[tex]\frac{\text{sin(B)}}{10}=\frac{\text{sin}(42^{\circ})}{16}[/tex]

[tex]\frac{\text{sin(B)}}{10}*10=\frac{10*\text{sin}(42^{\circ})}{16}[/tex]

[tex]\text{sin(B)}=\frac{10*\text{sin}(42^{\circ})}{16}[/tex]

[tex]B=\text{sin}^{-1}(\frac{10*\text{sin}(42^{\circ})}{16})[/tex]

[tex]B=\text{sin}^{-1}(\frac{10*0.669130606359}{16})[/tex]

[tex]B=\text{sin}^{-1}(\frac{6.69130606359}{16})[/tex]

[tex]B=\text{sin}^{-1}0.418206628974375)[/tex]  

[tex]B=24.72^{\circ}[/tex]  

Therefore, the equation [tex]\frac{\text{sin(B)}}{10}=\frac{\text{sin}(42^{\circ})}{16}[/tex] can be used to find m angle B.

Ver imagen ApusApus
ACCESS MORE