Respuesta :
Use this formula to answer your questions:
[tex](a-bi)(a+bi) = a^2 + b^2[/tex]
[tex](6 + 3i)(6 - 3i) = 6^2 + 3^2 = 36 + 9 = \boxed{\bf{45}}\\\\(4 - 5i)(4 + 5i) = 4^2 + 5^2 = 16 + 25 = \boxed{\bf{41}}\\\\(-3 + 8i)(-3 - 8i) = (-3)^2 + 8^2 = 9 + 64=\boxed{\bf{73}}[/tex]
[tex](a-bi)(a+bi) = a^2 + b^2[/tex]
[tex](6 + 3i)(6 - 3i) = 6^2 + 3^2 = 36 + 9 = \boxed{\bf{45}}\\\\(4 - 5i)(4 + 5i) = 4^2 + 5^2 = 16 + 25 = \boxed{\bf{41}}\\\\(-3 + 8i)(-3 - 8i) = (-3)^2 + 8^2 = 9 + 64=\boxed{\bf{73}}[/tex]
Answer:
(6 + 3i)(6 − 3i) = 45
(4 − 5i)(4 + 5i) = 41
(−3 + 8i)(−3 − 8i) = 73
Just took the test
For the second part its -36, then -4 + 28i