Respuesta :
The options of the question are the points
[tex]A(-5,-3)\\B(3,-3)\\C(-1,-6)\\D(4,-9)[/tex]
Step 1
Find the rule of the translation of the pre-image to the image
we know that
the point S has coordinates of [tex](3,-5)[/tex]
the point S' has coordinates of [tex](-4,1)[/tex]
so
a) the rule of the translation of the pre-image to the image is
[tex](x.y)----> (x-7,y+6)[/tex]
that means
the translation is [tex]7[/tex] units to the left and [tex]6[/tex] units up
Step 2
Find the inverse rule of the translation of the image to the pre-image
a) the inverse rule of the translation of the image to the pre-image is
[tex](x',y')---> (x'+7,y'-6)[/tex]
that means
the translation is [tex]7[/tex] units to the right and [tex]6[/tex] units down
Step 3
Find the coordinates of the vertices of the pre-image
Applying the inverse rule of the translation of the image to the pre-image
a) Point [tex]R'(-8,1)[/tex]
[tex](x',y')---> (x'+7,y'-6)[/tex]
[tex]R'(-8,1)---> R(-8+7,1-6)[/tex]
[tex]R'(-8,1)---> R(-1,-5)[/tex]
b) Point [tex]T'(-4,-3)[/tex]
[tex](x',y')---> (x'+7,y'-6)[/tex]
[tex]T'(-4,-3)---> T(-4+7,-3-6)[/tex]
[tex]T'(-4,-3)---> T(3,-9)[/tex]
c) Point [tex]U'(-8,-3)[/tex]
[tex](x',y')---> (x'+7,y'-6)[/tex]
[tex]U'(-8,-3)---> U(-8+7,-3-6)[/tex]
[tex]U'(-8,-3)---> U(-1,-9)[/tex]
Step 4
Using a graphing tool
graph the points of the pre-image and the points A,B,C and D to determine the solution of the problem
we have
[tex]R(-1,-5)\\S(3,-5)\\T(3,-9)\\U(-1,-9)[/tex]
[tex]A(-5,-3)\\B(3,-3)\\C(-1,-6)\\D(4,-9)[/tex]
see the attached figure
therefore
the answer is
[tex]C(-1,-6)[/tex]