Square RSTU is translated to form R'S'T'U', which has vertices R'(–8, 1), S'(–4, 1), T'(–4, –3), and U'(–8, –3). If point S has coordinates of (3, –5), which point lies on a side of the pre-image, square RSTU?

Respuesta :

 The options of the question are the points

[tex]A(-5,-3)\\B(3,-3)\\C(-1,-6)\\D(4,-9)[/tex]

Step 1

Find the rule of the translation of the pre-image to the image

we know that

the point S has coordinates of [tex](3,-5)[/tex]

the point S' has coordinates of  [tex](-4,1)[/tex]

so

a) the rule of the translation of the pre-image to the image is

[tex](x.y)----> (x-7,y+6)[/tex]

that means

the translation is [tex]7[/tex] units to the left and [tex]6[/tex] units up

Step 2

Find the inverse rule of the translation of the image to the pre-image

a) the inverse rule of the translation of the image to the pre-image is

[tex](x',y')---> (x'+7,y'-6)[/tex]  

that means

the translation is [tex]7[/tex] units to the right and [tex]6[/tex] units down

Step 3

Find the coordinates of the vertices of the pre-image

Applying the inverse rule of the translation of the image to the pre-image

a) Point [tex]R'(-8,1)[/tex]

[tex](x',y')---> (x'+7,y'-6)[/tex]  

[tex]R'(-8,1)---> R(-8+7,1-6)[/tex]  

[tex]R'(-8,1)---> R(-1,-5)[/tex]  

b) Point [tex]T'(-4,-3)[/tex]

[tex](x',y')---> (x'+7,y'-6)[/tex]  

[tex]T'(-4,-3)---> T(-4+7,-3-6)[/tex]  

[tex]T'(-4,-3)---> T(3,-9)[/tex]  

c) Point  [tex]U'(-8,-3)[/tex]

[tex](x',y')---> (x'+7,y'-6)[/tex]  

[tex]U'(-8,-3)---> U(-8+7,-3-6)[/tex]  

[tex]U'(-8,-3)---> U(-1,-9)[/tex]  

Step 4

Using a graphing tool

graph the points of the pre-image and the points A,B,C and D to determine the solution of the problem

we have

[tex]R(-1,-5)\\S(3,-5)\\T(3,-9)\\U(-1,-9)[/tex]

[tex]A(-5,-3)\\B(3,-3)\\C(-1,-6)\\D(4,-9)[/tex]

see the attached figure        

therefore        

the answer is

[tex]C(-1,-6)[/tex]

Ver imagen calculista

C: -1, -6

EDGE 2021

Step-by-step explanation: