Respuesta :
[tex]\bf ~~~~~~~~~~~~\textit{function transformations}
\\\\\\
% function transformations for trigonometric functions
% templates
f(x)=Asin(Bx+C)+D
\\\\
f(x)=Acos(Bx+C)+D\\\\
f(x)=Atan(Bx+C)+D
\\\\
-------------------[/tex]
[tex]\bf \bullet \textit{ stretches or shrinks}\\ ~~~~~~\textit{horizontally by amplitude } A\cdot B\\\\ \bullet \textit{ flips it upside-down if }A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }B\textit{ is negative}[/tex]
[tex]\bf ~~~~~~\textit{reflection over the y-axis} \\\\ \bullet \textit{ horizontal shift by }\frac{C}{B}\\ ~~~~~~if\ \frac{C}{B}\textit{ is negative, to the right}\\\\ ~~~~~~if\ \frac{C}{B}\textit{ is positive, to the left}\\\\ \bullet \textit{vertical shift by }D\\ ~~~~~~if\ D\textit{ is negative, downwards}\\\\ ~~~~~~if\ D\textit{ is positive, upwards}[/tex]
[tex]\bf \bullet \textit{function period or frequency}\\ ~~~~~~\frac{2\pi }{B}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\ ~~~~~~\frac{\pi }{B}\ for\ tan(\theta),\ cot(\theta)[/tex]
the frequency or Period of the function will then be
[tex]\bf f(x)=\cfrac{1}{4}cos(\stackrel{B}{2}x)+5\qquad \qquad \stackrel{period}{\cfrac{2}{B}}\implies \cfrac{2\pi }{2}\implies \pi [/tex]
[tex]\bf \bullet \textit{ stretches or shrinks}\\ ~~~~~~\textit{horizontally by amplitude } A\cdot B\\\\ \bullet \textit{ flips it upside-down if }A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }B\textit{ is negative}[/tex]
[tex]\bf ~~~~~~\textit{reflection over the y-axis} \\\\ \bullet \textit{ horizontal shift by }\frac{C}{B}\\ ~~~~~~if\ \frac{C}{B}\textit{ is negative, to the right}\\\\ ~~~~~~if\ \frac{C}{B}\textit{ is positive, to the left}\\\\ \bullet \textit{vertical shift by }D\\ ~~~~~~if\ D\textit{ is negative, downwards}\\\\ ~~~~~~if\ D\textit{ is positive, upwards}[/tex]
[tex]\bf \bullet \textit{function period or frequency}\\ ~~~~~~\frac{2\pi }{B}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\ ~~~~~~\frac{\pi }{B}\ for\ tan(\theta),\ cot(\theta)[/tex]
the frequency or Period of the function will then be
[tex]\bf f(x)=\cfrac{1}{4}cos(\stackrel{B}{2}x)+5\qquad \qquad \stackrel{period}{\cfrac{2}{B}}\implies \cfrac{2\pi }{2}\implies \pi [/tex]