Respuesta :
We can find the measure of angle B using the Law of cosines.
According to the Law of Cosines:
[tex] b^{2} = a^{2} + c^{2} - 2ac*cos(B) \\ \\ 2ac*cos(B)= a^{2} + c^{2}- b^{2} \\ \\ cos(B)= \frac{a^{2} + c^{2}- b^{2}}{2ac} [/tex]
Using the values of a,b and c in the above equation we get:
[tex]cos(B)= \frac{31^{2}+17^{2}-15^{2}}{2*31*17} \\ \\ cos(B)= \frac{1025}{1054} \\ \\ B=cos^{-1}(\frac{1025}{1054}) \\ \\ B=13.47[/tex]
Thus measure of angle B is 13.47 degrees. We can convert the decimal part to minutes by multiplying it by 60.
So measure of angle B will be 13 degrees and (60 x 0.47) minutes which equals 13 degrees and 28 minutes or 13° 28'.
Thus option A gives the correct answer.
According to the Law of Cosines:
[tex] b^{2} = a^{2} + c^{2} - 2ac*cos(B) \\ \\ 2ac*cos(B)= a^{2} + c^{2}- b^{2} \\ \\ cos(B)= \frac{a^{2} + c^{2}- b^{2}}{2ac} [/tex]
Using the values of a,b and c in the above equation we get:
[tex]cos(B)= \frac{31^{2}+17^{2}-15^{2}}{2*31*17} \\ \\ cos(B)= \frac{1025}{1054} \\ \\ B=cos^{-1}(\frac{1025}{1054}) \\ \\ B=13.47[/tex]
Thus measure of angle B is 13.47 degrees. We can convert the decimal part to minutes by multiplying it by 60.
So measure of angle B will be 13 degrees and (60 x 0.47) minutes which equals 13 degrees and 28 minutes or 13° 28'.
Thus option A gives the correct answer.