Respuesta :
[tex]The\ domain:\\x\neq0\ \vedge\ x+4\neq0\\\\D:x\in\mathbb{R}-\{-4;\ 0\}[/tex]
[tex]\dfrac{1}{x}+\dfrac{1}{x+4}=\dfrac{1}{2}\\\\\dfrac{x+4}{x(x+4)}+\dfrac{x}{x(x+4)}=\dfrac{1}{2}\\\\\dfrac{x+4+x}{x^2+4x}=\dfrac{1}{2}\\\\\dfrac{2x+4}{x^2+4x}=\dfrac{1}{2}\ \ \ \ |cross\ multiply\\\\1(x^2+4x)=2(2x+4)\\\\x^2+4x=4x+8\ \ \ \ |-4x\\\\x^2=8\to x=\pm\sqrt8\\\\x=-\sqrt{4\cdot2}\ \vee\ x=\sqrt{4\cdot2}\\\\\boxed{x=-2\sqrt2\ \vee\ x=2\sqrt2}\\\\The\ solution\ set\ is\ \{-2\sqrt2;\ 2\sqrt2\}[/tex]
[tex]\dfrac{1}{x}+\dfrac{1}{x+4}=\dfrac{1}{2}\\\\\dfrac{x+4}{x(x+4)}+\dfrac{x}{x(x+4)}=\dfrac{1}{2}\\\\\dfrac{x+4+x}{x^2+4x}=\dfrac{1}{2}\\\\\dfrac{2x+4}{x^2+4x}=\dfrac{1}{2}\ \ \ \ |cross\ multiply\\\\1(x^2+4x)=2(2x+4)\\\\x^2+4x=4x+8\ \ \ \ |-4x\\\\x^2=8\to x=\pm\sqrt8\\\\x=-\sqrt{4\cdot2}\ \vee\ x=\sqrt{4\cdot2}\\\\\boxed{x=-2\sqrt2\ \vee\ x=2\sqrt2}\\\\The\ solution\ set\ is\ \{-2\sqrt2;\ 2\sqrt2\}[/tex]
Answer:
[tex]x=2\sqrt{2}[/tex] and [tex]x=2\sqrt{2}[/tex]
Step-by-step explanation:
The given equation is
[tex]\frac{1}{x}+\frac{1}{x+4}=\frac{1}{2}[/tex]
We need to solve the given equation.
Taking LCM on left side.
[tex]\frac{(x+4)+x}{x(x+4)}=\frac{1}{2}[/tex]
[tex]\frac{2x+4}{x^2+4x}=\frac{1}{2}[/tex]
On cross multiplication we get
[tex]2(2x+4)=x^2+4x[/tex]
[tex]4x+8=x^2+4x[/tex]
Subtract 4x from both sides.
[tex]8=x^2[/tex]
Taking square root on both sides.
[tex]\pm\sqrt{8}=x[/tex]
[tex]\pm2\sqrt{2}=x[/tex]
Therefore, solutions of the given equation are [tex]x=2\sqrt{2}[/tex] and [tex]x=2\sqrt{2}[/tex].