Respuesta :
Hi,
Answer a:
[tex]f(x)=2x+2=y\\ y=2x+2\\ x=2y+2\\ x-2=2y\\ y= \dfrac{x-2}{2} \\ f^{-1}(x)= \dfrac{x-2}{2} \\ f^{-1}(4)= \dfrac{4-2}{2}= \dfrac{2}{2}=1 \\ [/tex]
Answer a:
[tex]f(x)=2x+2=y\\ y=2x+2\\ x=2y+2\\ x-2=2y\\ y= \dfrac{x-2}{2} \\ f^{-1}(x)= \dfrac{x-2}{2} \\ f^{-1}(4)= \dfrac{4-2}{2}= \dfrac{2}{2}=1 \\ [/tex]
Answer:
[tex]f^{-1}(4)=1[/tex]
A is correct
Step-by-step explanation:
Given function: f(x)=2x+2
First we will find the inverse of f(x)
f(x)=2x+2
Set f(x)=y, y=2x+2
Switch x and y , x=2y+2
Solve for y to get inverse of f(x)
[yex]y=\dfrac{x-2}{2}[/tex]
Thus, [tex]f^{-1}(x)=\dfrac{x-2}{2}[/tex]
Now, we find the value of inverse function at x=4
Put x=4 into inverse function.
[tex]f^{-1}(4)=\dfrac{4-2}{2}[/tex]
[tex]f^{-1}(4)=1[/tex]
Hence, The value of inverse function at x=4 is 1