Respuesta :

caylus
Hi,
Answer a:

[tex]f(x)=2x+2=y\\ y=2x+2\\ x=2y+2\\ x-2=2y\\ y= \dfrac{x-2}{2} \\ f^{-1}(x)= \dfrac{x-2}{2} \\ f^{-1}(4)= \dfrac{4-2}{2}= \dfrac{2}{2}=1 \\ [/tex]

Answer:

[tex]f^{-1}(4)=1[/tex]

A is correct

Step-by-step explanation:

Given function: f(x)=2x+2

First we will find the inverse of f(x)

f(x)=2x+2

Set f(x)=y,           y=2x+2

Switch x and y , x=2y+2

Solve for y to get inverse of f(x)

[yex]y=\dfrac{x-2}{2}[/tex]

Thus, [tex]f^{-1}(x)=\dfrac{x-2}{2}[/tex]

Now, we find the value of inverse function at x=4

Put x=4 into inverse function.

[tex]f^{-1}(4)=\dfrac{4-2}{2}[/tex]

[tex]f^{-1}(4)=1[/tex]

Hence, The value of inverse function at x=4 is 1