Respuesta :

First we distribute [tex] \frac{1}{5} [/tex] into [tex]n[/tex] and [tex] -\frac{1}{7}[/tex].

[tex] \frac{1}{5} * n = \frac{1}{5} n [/tex]
[tex] \frac{1}{5} * -\frac{1}{7} = - \frac{1}{35} [/tex]

That makes the left side of the equation 

[tex] \frac{1}{5} n - \frac{1}{35} = \frac{1}{6} n[/tex]

Now we subtract [tex] \frac{1}{5}n[/tex] from [tex] \frac{1}{6} n[/tex], which makes [tex] \frac{1}{30} [/tex]

Now the equation is 

[tex] -\frac{1}{35} = -\frac{1}{30n} [/tex]

Our goal is to isolate [tex]n[/tex], so we both sides by 30

[tex]30* -\frac{1}{35} = - \frac{1}{30}n * 30[/tex] 

That will make the equation 

[tex]- \frac{30}{35} = -n[/tex]

We multiply -1 on both sides of the equation:

[tex] \frac{30}{35} = n[/tex]

Finally we simplify [tex] \frac{30}{35} [/tex], which makes [tex] \frac{6}{7} [/tex]

So the answer is [tex]n = \frac{6}{7} [/tex]