Respuesta :

I used Sin30.
Good Lesson
Good day
Ver imagen angleofattack

Answer:

Here we have right triangles, which we can solve using trigonometric reasons, bceause we know the acute angles and the hypothenuse of the bigger right triangle.

Let's the sin function

[tex]sin30=\frac{x}{15}\\ x=15(sin30)\\x=15(\frac{1}{2} )\\x=\frac{15}{2}[/tex]

Then, we use the cosine function

[tex]cos30=\frac{z}{15}\\ z=15(\frac{\sqrt{3} }{2} )[/tex]

Now, we use the sin to find [tex]y[/tex] in the middle size right triangle

[tex]sin30=\frac{y}{15\frac{\sqrt{3} }{2} }\\ y=\frac{1}{2} \times 15\frac{\sqrt{3} }{2}\\ y=15\frac{\sqrt{3} }{4}[/tex]

Then, we use cosine in the smaller triangle

[tex]cos60=\frac{a}{\frac{15}{2} } \\a=\frac{15}{2} \times \frac{1}{2}\\ a=\frac{15}{4}[/tex]

Also, we know that

[tex]a+b=15[/tex], and [tex]a=\frac{15}{4}[/tex], so

[tex]b=15-a\\b=15-\frac{15}{4}\\ b=\frac{60-15}{4}\\ b=\frac{45}{4}[/tex]

Therefore, all the answers are

[tex]x= \frac{15}{2}\\ y=15\frac{\sqrt{3} }{4}\\ z=15\frac{\sqrt{3} }{2}\\a=\frac{15}{4}\\ b=\frac{45}{4}[/tex]