Respuesta :

^0 ...............1
^1..............1  1
^2............1  2  1 
^3...........1 3  3  1
^4..........1 4 6  4  1

(x+2)^4 = 1(x)^4(2)^0 + 4(x)^3(2)^1 + 6(x)^2(2)^2 + 4(x)^1(2)^3 + 1(x)^0(2)4
             = [tex] x^{4} + 8 x^{3} + 24 x^{2} + 32x + 16[/tex]

Alexa's answer is: [tex](x+2)^4=x^4+8x^3+24x^2+32x+16[/tex].

Using the binomial theorem we get:

[tex](x+2)^4 \\\\=(4C0)(x)^4(2)^0 + (4C1)(x)^3(2)^1 + (4C2)(x)^2(2)^2 + (4C3)(x)^1(2)^3 + (4C4)(x)^0(2)^4\\\\= 1(x)^4(2)^0 + 4(x)^3(2)^1 + 6(x)^2(2)^2 + 4(x)^1(2)^3 + 1(x)^0(2)^4\\\\=x^4+8x^3+24x^2+32x+16[/tex]

Learn more: https://brainly.com/question/10772040