(a) By DeMoivre's theorem, we have
[tex](\cos\theta+i\sin\theta)^5=\cos5\theta+i\sin5\theta[/tex]
On the LHS, expanding yields
[tex]\cos^5\theta+5i\cos^4\theta\sin\theta-10\cos^3\theta\sin^2\theta-10i\cos^2\theta\sin^3\theta+5\cos\theta\sin^4\theta+i\sin^4\theta[/tex]
Matching up real and imaginary parts, we have for (i) and (ii),
[tex]\cos5\theta=\cos^5\theta-10\cos^3\theta\sin^2\theta+5\cos\theta\sin^4\theta[/tex]
[tex]\sin5\theta=5\cos^4\theta\sin\theta-10\cos^2\theta\sin^3\theta+\sin^5\theta[/tex]
(b) By the definition of the tangent function,
[tex]\tan5\theta=\dfrac{\sin5\theta}{\cos5\theta}[/tex]
[tex]=\dfrac{5\cos^4\theta\sin\theta-10\cos^2\theta\sin^3\theta+\sin^5\theta}{\cos^5\theta-10\cos^3\theta\sin^2\theta+5\cos\theta\sin^4\theta}[/tex]
[tex]=\dfrac{5\tan\theta-10\tan^3\theta+\tan^5\theta}{1-10\tan^2\theta+5\tan^4\theta}[/tex]
[tex]=\dfrac{t^5-10t^3+5t}{5t^4-10t^2+1}[/tex]
(c) Setting [tex]\theta=\dfrac\pi5[/tex], we have [tex]t=\tan\dfrac\pi5[/tex] and [tex]\tan5\left(\dfrac\pi5\right)=\tan\pi=0[/tex]. So
[tex]0=\dfrac{t^5-10t^3+5t}{5t^4-10t^2+1}[/tex]
At the given value of [tex]t[/tex], the denominator is a non-zero number, so only the numerator can contribute to this reducing to 0.
[tex]0=t^5-10t^3+5t\implies0=t^4-10t^2+5[/tex]
Remember, this is saying that
[tex]0=\tan^4\dfrac\pi5-10\tan^2\dfrac\pi5+5[/tex]
If we replace [tex]\tan^2\dfrac\pi5[/tex] with a variable [tex]x[/tex], then the above means [tex]\tan^2\dfrac\pi5[/tex] is a root to the quadratic equation,
[tex]x^2-10x+5=0[/tex]
Also, if [tex]\theta=\dfrac{2\pi}5[/tex], then [tex]t=\tan\dfrac{2\pi}5[/tex] and [tex]\tan5\left(\dfrac{2\pi}5\right)=\tan2\pi=0[/tex]. So by a similar argument as above, we deduce that [tex]\tan^2\dfrac{2\pi}5[/tex] is also a root to the quadratic equation above.
(d) We know both roots to the quadratic above. The fundamental theorem of algebra lets us write
[tex]x^2-10x+5=\left(x-\tan^2\dfrac\pi5\right)\left(x-\tan^2\dfrac{2\pi}5\right)[/tex]
Expand the RHS and match up terms of the same power. In particular, the constant terms satisfy
[tex]5=\tan^2\dfrac\pi5\tan^2\dfrac{2\pi}5\implies\tan\dfrac\pi5\tan\dfrac{2\pi}5=\pm\sqrt5[/tex]
But [tex]\tanx>0[/tex] for all [tex]0<x<\dfrac\pi2[/tex], as is the case for [tex]x=\dfrac\pi5[/tex] and [tex]x=\dfrac{2\pi}5[/tex], so we choose the positive root.