Complete the square to determine the maximum or minimum value of the function defined by the expression. x2 + 30x + 21 A) maximum value at 15 B) maximum value at 30 C) maximum value at −15 D) minimum value at −204

Respuesta :

x^2 + 30x + 21
=   ( x + 15)^2 - 225 + 21
= (x + 15)^2 - 204

Its D  minimum at -204

Answer:

[tex]x^2 + 30x + 21=(x+15)^2-204[/tex]

Option D - minimum value at −204

Step-by-step explanation:

Given : Expression [tex]x^2 + 30x + 21[/tex]

To find : Complete the square to determine the maximum or minimum value of the function defined by the expression?

Solution :  

The general form of quadratic equation is   [tex]ax^2+bx+c=0[/tex]

To convert into complete square the form is [tex]a(x+d)^2+e=0[/tex]

Where, [tex]d=\frac{b}{2a}[/tex] and [tex]e=c-\frac{b^2}{4a}[/tex]

Now, comparing the given equation [tex]x^2 + 30x + 21[/tex]

a=1 , b=30, c=21        

[tex]d=\frac{b}{2a}=\frac{30}{2(1)}=15[/tex]

[tex]e=21-\frac{30^2}{4(1)}=21-225=-204[/tex]

Substitute in [tex]a(x+d)^2+e=0[/tex]

[tex]1(x+15)^2+(-204)=0[/tex]

[tex](x+15)^2-204=0[/tex]

[tex][tex]x^2 + 30x + 21[/tex][/tex]

By Completing the square we get,            

[tex]x^2 + 30x + 21=(x+15)^2-204[/tex]

The minimum value of this is when x+15 = 0 ⇒ x=-15

i.e, [tex](-15+15)^2-204=-204[/tex]

Therefore, Option D is correct.

Minimum value of the function is at -204.

RELAXING NOICE
Relax