Respuesta :
x^2 + 30x + 21
= ( x + 15)^2 - 225 + 21
= (x + 15)^2 - 204
Its D minimum at -204
= ( x + 15)^2 - 225 + 21
= (x + 15)^2 - 204
Its D minimum at -204
Answer:
[tex]x^2 + 30x + 21=(x+15)^2-204[/tex]
Option D - minimum value at −204
Step-by-step explanation:
Given : Expression [tex]x^2 + 30x + 21[/tex]
To find : Complete the square to determine the maximum or minimum value of the function defined by the expression?
Solution :
The general form of quadratic equation is [tex]ax^2+bx+c=0[/tex]
To convert into complete square the form is [tex]a(x+d)^2+e=0[/tex]
Where, [tex]d=\frac{b}{2a}[/tex] and [tex]e=c-\frac{b^2}{4a}[/tex]
Now, comparing the given equation [tex]x^2 + 30x + 21[/tex]
a=1 , b=30, c=21
[tex]d=\frac{b}{2a}=\frac{30}{2(1)}=15[/tex]
[tex]e=21-\frac{30^2}{4(1)}=21-225=-204[/tex]
Substitute in [tex]a(x+d)^2+e=0[/tex]
[tex]1(x+15)^2+(-204)=0[/tex]
[tex](x+15)^2-204=0[/tex]
[tex][tex]x^2 + 30x + 21[/tex][/tex]
By Completing the square we get,
[tex]x^2 + 30x + 21=(x+15)^2-204[/tex]
The minimum value of this is when x+15 = 0 ⇒ x=-15
i.e, [tex](-15+15)^2-204=-204[/tex]
Therefore, Option D is correct.
Minimum value of the function is at -204.
