Respuesta :
By the chain rule,
[tex]\dfrac{\partial z}{\partial s}=\dfrac{\partial z}{\partial x}\cdot\dfrac{\partial x}{\partial s}+\dfrac{\partial z}{\partial y}\cdot\dfrac{\partial y}{\partial s}[/tex]
[tex]\dfrac{\partial z}{\partial s}=(4x^3+2xy)(1)+(x^2)(tu^2)[/tex]
When [tex](s,t,u)=(3,1,2)[/tex], we get [tex](x,y)=(3,12)[/tex], so at this point the partial derivative of [tex]z[/tex] with respect to [tex]s[/tex] takes on a value of
[tex]\dfrac{\partial z}{\partial s}\bigg|_{s=3,t=1,u=2}=216[/tex]
[tex]\dfrac{\partial z}{\partial s}=\dfrac{\partial z}{\partial x}\cdot\dfrac{\partial x}{\partial s}+\dfrac{\partial z}{\partial y}\cdot\dfrac{\partial y}{\partial s}[/tex]
[tex]\dfrac{\partial z}{\partial s}=(4x^3+2xy)(1)+(x^2)(tu^2)[/tex]
When [tex](s,t,u)=(3,1,2)[/tex], we get [tex](x,y)=(3,12)[/tex], so at this point the partial derivative of [tex]z[/tex] with respect to [tex]s[/tex] takes on a value of
[tex]\dfrac{\partial z}{\partial s}\bigg|_{s=3,t=1,u=2}=216[/tex]
Using the chain rule, the derivatives are:
[tex]\frac{\partial z}{\partial s} = 216[/tex]
[tex]\frac{\partial z}{\partial t} = 576[/tex]
[tex]\frac{\partial z}{\partial u} = -288[/tex]
The function z is:
[tex]z = x^4 + x^2y[/tex]
It is a function of x and y, which are functions of s, t and u. Thus, the partial derivatives are:
[tex]\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s}[/tex]
[tex]\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}[/tex]
[tex]\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial u}[/tex]
The functions for x and y are:
[tex]x = s + 2t[/tex]
[tex]y = stu^2[/tex]
Then:
[tex]\frac{\partial z}{\partial s} = (4x^3+2xy) + x^2(tu^2)[/tex]
[tex]\frac{\partial z}{\partial s} = (4(s + 2t - u)^3+2(s + 2t - u)(stu^2)) + (s+2t - u)^2(tu^2)[/tex]
Considering s = 3, t = 1, u = 2:
[tex]\frac{\partial z}{\partial s} = (4(3 + 2 - 2)^3+2(3 + 2 - 2)(3(1)(2^2)) + (3+2-2)^2(2^2) = 216[/tex]
[tex]\frac{\partial z}{\partial t} = 2(4x^3+2xy) + x^2su^2[/tex]
[tex]\frac{\partial z}{\partial t} = 2(4(s + 2t - u)^3+2(s + 2t - u)(stu^2)) + (s+2t - u)^2su^2[/tex]
[tex]\frac{\partial z}{\partial t} = 2(4(3 + 2 - 2)^3+2(3 + 2 - 2)(3(1)(2^2)) + (3+2 - 2)^2(3)(2^2) = 576[/tex]
[tex]\frac{\partial z}{\partial u} = -(4x^3+2xy) + 2x^2stu[/tex]
[tex]\frac{\partial z}{\partial u} = -(4(s + 2t - u)^3+2(s + 2t - u)(stu^2)) + 2(s + 2t - u)^2stu[/tex]
[tex]\frac{\partial z}{\partial u} = -(4(3 + 2 - 2)^3+2(3 + 2 - 2)(3(1)(2^2)) + 2(3 + 2 - 2)^2(3)(1)(2) = -288[/tex]
A similar problem is given at https://brainly.com/question/10037173