Respuesta :
The answer is A. because
A.
[tex]0.5 > 0.25 > 0.125 > 0.06125[/tex]
B.
[tex] 0.5 < 1 < 2 < 4[/tex]
C.
[tex]0.5 < 1.5 < 4.5 < 13.5[/tex]
D.
[tex]0.5 < 3 < 8 < 108[/tex]
A.
[tex]0.5 > 0.25 > 0.125 > 0.06125[/tex]
B.
[tex] 0.5 < 1 < 2 < 4[/tex]
C.
[tex]0.5 < 1.5 < 4.5 < 13.5[/tex]
D.
[tex]0.5 < 3 < 8 < 108[/tex]
Answer:
Option: A is the correct answer.
A) [tex]\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+.........[/tex]
Step-by-step explanation:
We know that a geometric series of the type:
[tex]a_1+a_2+a_3+a_4+...[/tex]
where [tex]a_1=a\\\\a_2=ar\\\\a_3=ar^2\\.\\.\\.\\.\\.\\.[/tex]
converges if r<1
Hence, we will check in each of the given options for which r<1
B)
[tex]\dfrac{1}{2}+1+2+4+...[/tex]
From this series we observe that the common ratio i.e. r=2
Since,
[tex]a_1=\dfrac{1}{2}\\\\a_2=\dfrac{1}{2}\times 2\\\\\\a_2=1\\\\a_3=1\times 2=2\\\\a_4=2\times 2=4[/tex]
and so on.
Hence, the series is not convergent.
Hence, option: B is incorrect.
C)
[tex]\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{9}{2}+\dfrac{27}{2}+....[/tex]
From this series we observe that the common ratio i.e. r=3>1
Hence, the series diverges.
Hence, option: C is false.
D)
[tex]\dfrac{1}{2}+3+18+108+....[/tex]
In this geometric series trhe common ratio is: 6>1
Hence, the series does not converge.
Hence, option D is incorrect.
A)
[tex]\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+.........[/tex]
Here we have:
common ratio i.e. r=1/2<1
Hence, the geometric series converge and the sum is given by:
[tex]S=\dfrac{a}{1-r}\\\\\\S=\dfrac{\dfrac{1}{2}}{1-\dfrac{1}{2}}\\\\\\S=\dfrac{\dfrac{1}{2}}{\dfrac{1}{2}}=1[/tex]
Hence, option: A is correct.
