Which geometric series converges?

A. 1/2 + 1/4 + 1/8 + 1/16 + ...

B. 1/2 + 1 + 2 + 4 + ...

C. 1/2 + 3/2+ 9/2+ 27/2+...

D. 1/2 + 3 + 18 + 108 + ...

Respuesta :

The answer is A. because

A.
[tex]0.5 > 0.25 > 0.125 > 0.06125[/tex]
B.
[tex] 0.5 < 1 < 2 < 4[/tex]
C.
[tex]0.5 < 1.5 < 4.5 < 13.5[/tex]
D.
[tex]0.5 < 3 < 8 < 108[/tex]

Answer:

Option: A is the correct answer.

          A)      [tex]\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+.........[/tex]

Step-by-step explanation:

We know that a geometric series of the type:

[tex]a_1+a_2+a_3+a_4+...[/tex]

where [tex]a_1=a\\\\a_2=ar\\\\a_3=ar^2\\.\\.\\.\\.\\.\\.[/tex]

converges if r<1

Hence, we will check in each of the given options for which r<1

B)

 [tex]\dfrac{1}{2}+1+2+4+...[/tex]

From this series we observe that the common ratio i.e. r=2

Since,

[tex]a_1=\dfrac{1}{2}\\\\a_2=\dfrac{1}{2}\times 2\\\\\\a_2=1\\\\a_3=1\times 2=2\\\\a_4=2\times 2=4[/tex]

and so on.

Hence, the series is not convergent.

Hence, option: B is incorrect.

C)

 [tex]\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{9}{2}+\dfrac{27}{2}+....[/tex]

From this series we observe that the common ratio i.e. r=3>1

Hence, the series diverges.

Hence, option: C is false.

D)

 [tex]\dfrac{1}{2}+3+18+108+....[/tex]

In this geometric series trhe common ratio is: 6>1

Hence, the series does not converge.

Hence, option D is incorrect.

A)

  [tex]\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+.........[/tex]

Here we have:

         common ratio i.e. r=1/2<1

Hence, the geometric series converge and the sum is given by:

[tex]S=\dfrac{a}{1-r}\\\\\\S=\dfrac{\dfrac{1}{2}}{1-\dfrac{1}{2}}\\\\\\S=\dfrac{\dfrac{1}{2}}{\dfrac{1}{2}}=1[/tex]

         Hence, option: A is correct.

RELAXING NOICE
Relax