Question B work out angle BXC give reason for each angle you work out.

Answer:
[tex]m \angle BXC = 70\°[/tex]
Step-by-step explanation:
According to the figure,
[tex]\angle XBC \cong \angle AXY[/tex], by corresponding angles definition.
So, [tex]m \angle XBC = 55\°[/tex]
Then, [tex]m\angle XBC = m\angle XCB[/tex], by isosceles triangle theorem.
[tex]m\angle XCB=55\°[/tex]
Now, [tex]m\angle XBC + m\angle XCB + \angle BXC = 180\°[/tex], by internal angles theorem.
Replacing and solving for [tex]\angle BXC}[/tex], we have
[tex]55 +55 + m\angle BXC = 180\\m\angle BXC = 180-110=70\°[/tex]
Therefore, [tex]m \angle BXC = 70\°[/tex]