Respuesta :
The graph of the given polar curve is shown in the figure. One of the petals traverses from π/3 to π.
The formula in solving for the arc length in polar form is
[tex]s=\sqrt{r^2+\left(\frac{dr}{d\theta }\right)^2}d\theta [/tex]
The derivative of r with respect to θ is
[tex]\frac{d}{dx}\left(4+2\cos \left(3x\right)\right)=-6\sin \left(3x\right)[/tex]
So, the arc length of 1 petal is
[tex]\:\int _{\frac{\pi }{3}}^{\pi }\:\sqrt{\left(4+2cos\left(3\theta \right)\right)^2+\left(-6sin\left(3\theta \right)\right)^2}d\theta =12.0999[/tex]
The formula in solving for the arc length in polar form is
[tex]s=\sqrt{r^2+\left(\frac{dr}{d\theta }\right)^2}d\theta [/tex]
The derivative of r with respect to θ is
[tex]\frac{d}{dx}\left(4+2\cos \left(3x\right)\right)=-6\sin \left(3x\right)[/tex]
So, the arc length of 1 petal is
[tex]\:\int _{\frac{\pi }{3}}^{\pi }\:\sqrt{\left(4+2cos\left(3\theta \right)\right)^2+\left(-6sin\left(3\theta \right)\right)^2}d\theta =12.0999[/tex]


The length of each petal of the polar curve is 12.099.
We have given that the polar curve r=4+2cos3 theta
What is the formula for arc length in polar form?
[tex]s=\sqrt{r^2+\frac{dr}{d\theta}^2 }d\theta[/tex]
Differentiate r with respect to θ we get,
[tex]\frac{d}{dx}(4+2 cos(3x)=-6sin(3x)[/tex]
Therefore,the arc length of 1 petal is,
Integral(pi/3 to pi )[tex]\sqrt{(4+2cos (3\theta))^2+(-6sin (3\theta))^2d\theta} =12.099[/tex]
Therefore, the length of each petal of the polar curve is 12.099.
To learn more about the arc length visit:
https://brainly.ph/question/2129272