Respuesta :

gmany
The standard form:
[tex](x-3)^2+(y+5)^2=64[/tex].
Use:  [tex](a\pm b)^2=a^2\pm2ab+b^2[/tex].
[tex]x^2-2\cdot x\cdot3+3^2+y^2+2\cdot y\cdot5+5^2=64\\\\x^2-6x+9+y^2+10y+25=64\ \ \ |-64\\\\x^2+y^2-6x+10y-39=0[/tex]
.
The general form.

Answer:

The equation [tex](x-3)^2+(y+5)^2=64[/tex]   in standard form for the circle is [tex](x-3)^2+(y-(-5))^2=8^2[/tex]

Step-by-step explanation:

Given : Equation of circle as  [tex](x-3)^2+(y+5)^2=64[/tex]

We have to write the equation in standard form for the circle.

 

The standard equation of circle with center (h,k) and radius r is given as

[tex](x-h)^2+(y-k)^2=r^2[/tex]

Consider the given equation  [tex](x-3)^2+(y+5)^2=64[/tex]

64 can be written as 8²

Rewrite it in standard form as ,

[tex](x-3)^2+(y-(-5))^2=8^2[/tex]

where center is (3, - 5) and radius = 8

Thus, The equation [tex](x-3)^2+(y+5)^2=64[/tex]   in standard form for the circle is [tex](x-3)^2+(y-(-5))^2=8^2[/tex]

                                                 

ACCESS MORE