Respuesta :

files are attached below

Ver imagen ashimasood66
Ver imagen ashimasood66

Answer:

The graph as shown below.

Step-by-step explanation:

Given : The function [tex]f(x)=\frac{1}{x-3}-2[/tex]

We have to plot the graph for the given function   [tex]f(x)=\frac{1}{x-3}-2[/tex]  

Consider the given function [tex]f(x)=\frac{1}{x-3}-2[/tex]

Domain of function [tex]f(x)=\frac{1}{x-3}-2[/tex]

DOMAIN is set of input values for which the function is real and has defined values.        

So, The given function is undefined at x = 3

So, Domain is [tex]x<3\quad \mathrm{or}\quad \:x>3[/tex]

RANGE is the set of values of dependent variable  for which the function is defined.

Inverse of given function is  [tex]y=\frac{3x+7}{x+2}[/tex]

Now, domain of inverse function is [tex]f\left(x\right)<-2\quad \mathrm{or}\quad \:f\left(x\right)>-2[/tex]

Now, x intercept and y- intercepts

x intercept where y = 0 and y- intercept where x= 0

Let f(x) = y

Then [tex]y=\frac{1}{x-3}-2[/tex]

Put x = 0

thus y- intercept is [tex]\left(0,\:-\frac{7}{3}\right)[/tex]

Now put y = 0

Then  x- intercept is [tex]\left(\frac{7}{2},\:0\right)[/tex]

Now, Calculate the vertical and horizontal asymptotes,

Vertical asymptotes,

Go over every undefined point and check if at least one of the following statements is satisfied.

[tex]\lim _{x\to a^-}f\left(x\right)=\pm \infty[/tex]

[tex]\lim _{x\to a^+}f\left(x\right)=\pm \infty[/tex]

Thus, The vertical asymptotes is x = 3

And For horizontal asymptotes,

[tex]\mathrm{Check\:if\:at\:}x\to \pm \infty \mathrm{\:the\:function\:}y=\frac{1}{x-3}-2\mathrm{\:behaves\:as\:a\:line,\:}y=mx+b[/tex]

We have y = -2 as horizontal asymptotes.

Plot we get the graph as shown below.

Ver imagen athleticregina
ACCESS MORE