Respuesta :
Answer:
The graph as shown below.
Step-by-step explanation:
Given : The function [tex]f(x)=\frac{1}{x-3}-2[/tex]
We have to plot the graph for the given function [tex]f(x)=\frac{1}{x-3}-2[/tex]
Consider the given function [tex]f(x)=\frac{1}{x-3}-2[/tex]
Domain of function [tex]f(x)=\frac{1}{x-3}-2[/tex]
DOMAIN is set of input values for which the function is real and has defined values.
So, The given function is undefined at x = 3
So, Domain is [tex]x<3\quad \mathrm{or}\quad \:x>3[/tex]
RANGE is the set of values of dependent variable for which the function is defined.
Inverse of given function is [tex]y=\frac{3x+7}{x+2}[/tex]
Now, domain of inverse function is [tex]f\left(x\right)<-2\quad \mathrm{or}\quad \:f\left(x\right)>-2[/tex]
Now, x intercept and y- intercepts
x intercept where y = 0 and y- intercept where x= 0
Let f(x) = y
Then [tex]y=\frac{1}{x-3}-2[/tex]
Put x = 0
thus y- intercept is [tex]\left(0,\:-\frac{7}{3}\right)[/tex]
Now put y = 0
Then x- intercept is [tex]\left(\frac{7}{2},\:0\right)[/tex]
Now, Calculate the vertical and horizontal asymptotes,
Vertical asymptotes,
Go over every undefined point and check if at least one of the following statements is satisfied.
[tex]\lim _{x\to a^-}f\left(x\right)=\pm \infty[/tex]
[tex]\lim _{x\to a^+}f\left(x\right)=\pm \infty[/tex]
Thus, The vertical asymptotes is x = 3
And For horizontal asymptotes,
[tex]\mathrm{Check\:if\:at\:}x\to \pm \infty \mathrm{\:the\:function\:}y=\frac{1}{x-3}-2\mathrm{\:behaves\:as\:a\:line,\:}y=mx+b[/tex]
We have y = -2 as horizontal asymptotes.
Plot we get the graph as shown below.
