Which expression is equivalent to (x^4/3 x^2/3)^1/3?

Answer : The correct option is, [tex]x^{\frac{2}{3}}[/tex]
Step-by-step explanation :
The given expression is :
[tex](x^{\frac{4}{3}}\times x^{\frac{2}{3}})^{\frac{1}{3}}[/tex]
First we have to solve the term present in the bracket.
Identity used : [tex]x^a\times x^b=x^{(a+b)}[/tex]
[tex]\Rightarrow (x^{(\frac{4}{3}+\frac{2}{3})})^{\frac{1}{3}}[/tex]
By the adding the powers of 'x', we get:
[tex]\Rightarrow (x^{\frac{6}{3}})^{\frac{1}{3}}[/tex]
[tex]\Rightarrow (x^{2})^{\frac{1}{3}}[/tex]
Now we have to use identity [tex](x^{a})^b=x^{ab}[/tex], we get :
[tex]\Rightarrow (x)^{(2\times \frac{1}{3})}[/tex]
[tex]\Rightarrow (x)^{\frac{2}{3}}[/tex]
Therefore, the correct option is, [tex]x^{\frac{2}{3}}[/tex]