Respuesta :
E = m c²
where E = energy released
m = mass of the nucleus
C= velocity of light
m = 9.106 x 10⁻³ x 1.67 x 10⁻²⁷ kg
C = 3 x 10⁸ m/s and C² = 9 x 10¹⁶
E = 1.37 x 10 ⁻¹² J
where E = energy released
m = mass of the nucleus
C= velocity of light
m = 9.106 x 10⁻³ x 1.67 x 10⁻²⁷ kg
C = 3 x 10⁸ m/s and C² = 9 x 10¹⁶
E = 1.37 x 10 ⁻¹² J
Answer : The amount of energy released is, [tex]136.043\times 10^{-14}J[/tex]
Explanation :
According to the Einstein equation, the energy is equal to the product of mass and the square of the speed of light.
The mathematical expression is :
[tex]E=m\times c^2[/tex]
where,
E = energy
c = speed of light = [tex]3\times 10^8m/s[/tex]
m = mass of nucleus = [tex]9.106\times 10^{-3}amu[/tex]
Conversion the mass of nucleus from 'amu' into 'Kg' :
As, [tex]1amu=1.66\times 10^{-27}Kg[/tex]
So, [tex]9.106\times 10^{-3}amu=(9.106\times 10^{-3})\times (1.66\times 10^{-27})Kg[/tex]
Now put all the given values in the above formula, we get the amount of energy released.
[tex]E=[(9.106\times 10^{-3})\times (1.66\times 10^{-27})Kg]\times (3\times 10^8m/s)^2[/tex]
[tex]E=136.043\times 10^{-14}J[/tex]
Therefore, the amount of energy released is, [tex]136.043\times 10^{-14}J[/tex]