The indicated function 1()y (x) is a solution of the following differential equation: 1= ln(x)x 1/2 . Use reduction of order, or the formula 2=1()−∫()y2 =y 1 (x)e −∫P(x)dx.
A) y 2 = ln(x)x 1/2e ∫ 4x 2 1dx
B) 1/2ln()−14y 2= ln(x)x 1/2e − 4x1
C) 1/2ln()18y 2= ln(x)x 1/2e − 8x1
D)1/2ln()−116y 2 = ln(x)x 1/2e − 16x1