For xϵR,x≠0, if y(x) is a differentiable function such that x∫₁ˣ1y(t)dt=(x+1)∫₁ˣ ty(t)dt, then y(x) equals:
(Where C is a constant)
A.Cx³e¹/ˣ
B.Cx²e⁻¹/ˣ
C.Cxe ⁻¹/ˣ
D.Cx³e⁻¹/ˣ