The cheetah is the fastest land mammal and is highly specialized to run down prey. The cheetah often exceeds speeds of 60 miles per hour (mph) and is capable of speeds above 72 mph. The accompanying table contains a sample of the top speeds of 35 cheetahs. The sample mean and sample standard deviation of these speeds are 59.53 mph and 4.21 mph, respectively. A histogram of the speeds is bell-shaped Complete parts (a) through (d) below. Click the icon to view the top speeds of cheetahs. a. Is it reasonable to apply the empirical rule to estimate the percentages of observations that lie within one, two, and three standard deviations to either side of the mean? A. It is not reasonable to apply the empirical rule. The data is quantitative, but the value of k takes on values less than 1; therefore, the empirical rule is not appropriate. B. It is reasonable to apply the empirical rule. The data is quantitative and the mean and standard deviation are known; therefore, the empirical rule applies. C. It is not reasonable to apply the empirical rule. The data is quantitative and the histogram of the data is bell-shaped, but this does not imply that the data itself is bell-shaped; therefore, the empirical rule is not appropriate. D. It is reasonable to apply the empirical rule. The data is quantitative and the histogram of the data is bell-shaped; therefore, the empirical rule applies. b. Use the empirical rule to estimate the percentages of observations that lie within one, two, and three standard deviations to either side of the mean. Roughly 68% of observations lie within one standard deviation to either side of the mean. Roughly 95 % of observations lie within two standard deviations to either side of the mean. Roughly 99.7% of observations lie within three standard deviations to either side of the mean. (Type integers or decimals. Do not round.) c. Use the data to obtain the exact percentages of observations that lie within one, two, and three standard deviations to either side of the mean. Using the data.% of observations lie within one standard deviation to either side of the mean, % of observations lie within two standard deviations to either side of the mean, and % of observations lie within three standard deviations to either side of the mean. (Type integers or decimals. Round to one decimal place as needed.)