Use the given feasible region determined by the constraint inequalities to find the maximum and minimum of the given objective function (if they exist). (If an answer does not exist, enter DNE:) C = 6x + 2y (6,2) (0, 0) Step 1 We want to find the maximum and minimum values of the objective function C = 6x + 2y given the feasible region determined by the constraint inequalities. We know that the optimal values of the objective function will occur at ~Select--- of the feasible region: Thus, we need to test the coordinates of the corner points in our objective function. Corner C = 6x + 2y (0, 0) (7, 0) (6, 2) (4, 4) (0, 3)'