A runner of mass 61.0 kg runs around the edge of a large horizontal turntable mounted on a vertical, frictionless axis through its center, i.e. a sturdy merry-go-round constructed of strong but lightweight materials and with a running track along its rim. His velocity relative to the Earth has magnitude of 3.60 m/s. The turntable is rotating in the opposite direction with an angular velocity having a magnitude of 0.190 rad s relative to the Earth. The radius of the turntable is 2.90 m, and its moment of inertia about the axis of rotation is 655.0 kg . mºAs viewed from above, the runner is running in the counterclockwise direction, i.e. the positive angular direction.
As measured by an observer stationary on the Earth, what is the magnitude of the runner's momentum, and what is the runner's angular momentum about the turntable axis? Treat the runner as a point mass. Give your answers as an ordered pair, with momentum first, followed by a comma, followed by angular momentum. Give the magnitude of the runner's momentum. Give the component of angular momentum about the central axis, with counterclockwise positive.
Find the final angular velocity of the system if the runner comes to rest relative to the turntable. Treat the runner as a point mass.