2. Suppose that = 1, . . . , is an independent and identically distributed sample from the distribution
[ = | ] = (1 − )
2
2.1 Determine the likelihood for .
2.2 Find the maximum likelihood estimator, ˆ, of .
2.3 Calculate the information matrix, ().
2.4 Discuss whether the CRLB is attained by ˆ asymptotically as → ∞ . You are not expected to
provide precise mathematical arguments but explain your thinking as far as possible.